Από το περιοδικό “New Scientist” στα αγγλικά αλλά, όσοι μπορείτε διαβάστε το διότι αν δεν δούμε το πρόσωπο μπορεί να δούμε το …χέρι του θεού!_Κ.Κ.

Short Sharp Science: Higgs boson: is a result imminent?.

Τελικά ήταν διαδοση αλλά, επειδή έλαβα κάποια e-mail ορίστε ένα ωραίο άρθρο για το Σωματίδιο του Θεού

How Particles Acquire Mass

By Mary and Ian Butterworth, Imperial College London, and Doris and Vigdor Teplitz, Southern Methodist University, Dallas, Texas, USA.

The Higgs boson is a hypothesised particle which, if it exists, would give the mechanism by which particles acquire mass.

Matter is made of molecules; molecules of atoms; atoms of a cloud of electrons about one-hundred-millionth of a centimetre and a nucleus about one-hundred-thousandth the size of the electron cloud. The nucleus is made of protons and neutrons. Each proton (or neutron) has about two thousand times the mass of an electron. We know a good deal about why the nucleus is so small. We do not know, however, how the particles get their masses. Why are the masses what they are? Why are the ratios of masses what they are? We can’t be said to understand the constituents of matter if we don’t have a satisfactory answer to this question.

Peter Higgs has a model in which particle masses arise in a beautiful, but complex, progression. He starts with a particle that has only mass, and no other characteristics, such as charge, that distinguish particles from empty space. We can call his particle H. H interacts with other particles; for example if H is near an electron, there is a force between the two. H is of a class of particles called “bosons”. We first attempt a more precise, but non-mathematical statement of the point of the model; then we give explanatory pictures.

In the mathematics of quantum mechanics describing creation and annihilation of elementary particles, as observed at accelerators, particles at particular points arise from “fields” spread over space and time. Higgs found that parameters in the equations for the field associated with the particle H can be chosen in such a way that the lowest energy state of that field (empty space) is one with the field not zero. It is surprising that the field is not zero in empty space, but the result, not an obvious one, is: all particles that can interact with H gain mass from the interaction.

Thus mathematics links the existence of H to a contribution to the mass of all particles with which H interacts. A picture that corresponds to the mathematics is of the lowest energy state, “empty” space, having a crown of H particles with no energy of their own. Other particles get their masses by interacting with this collection of zero-energy H particles. The mass (or inertia or resistance to change in motion) of a particle comes from its being “grabbed at” by Higgs particles when we try and move it.

If particles no get their masses from interacting with the empty space Higgs field, then the Higgs particle must exist; but we can’t be certain without finding the Higgs. We have other hints about the Higgs; for example, if it exists, it plays a role in “unifying” different forces. However, we believe that nature could contrive to get the results that would flow from the Higgs in other ways. In fact, proving the Higgs particle does not exist would be scientifically every bit as valuable as proving it does.

These questions, the mechanisms by which particles get their masses, and the relationship amongs different forces of nature, are major ones and so basic to having an understanding of the constituents of matter and the forces among them, that it is hard to see how we can make significant progress in our understanding of the stuff of which the earth is made without answering them.

Και ακόμα ένα, πιο elegant

The Need to Understand Mass

By Roger Cashmore Department of Physics, University of Oxford, UK.

What determines the size of objects that we see around us or indeed even the size of ourselves? The answer is the size of the molecules and in turn the atoms that compose these molecules. But what determines the size of the atoms themselves? Quantum theory and atomic physics provide an answer. The size of the atom is determined by the paths of the electrons orbiting the nucleus. The size of those orbits, however, is determined by the mass of the electron. Were the electron’s mass smaller, the orbits (and hence all atoms) would be smaller, and consequently everything we see would be smaller. So understanding the mass of the electron is essential to understanding the size and dimensions of everything around us.

It might be hard to understand the origin of one quantity, that quantity being the mass of the electron. Fortunately nature has given us more than one elementary particle and they come with a wide variety of masses. The lightest particle is the electron and the heaviest particle is believed to be the particle called the top quark, which weighs at least 200,000 times as much as an electron. With this variety of particles and masses we should have a clue to the individual masses of the particles.

Unfortunately if you try and write down a theory of particles and their interactions then the simplest version requires all the masses of the particles to be zero. So on one hand we have a whole variety of masses and on the other a theory in which all masses should be zero. Such conundrums provide the excitement and the challenges of science.

There is, however, one very clever and very elegant solution to this problem, a solution first proposed by Peter Higgs. He proposed that the whole of space is permeated by a field, similar in some ways to the electromagnetic field. As particles move through space they travel through this field, and if they interact with it they acquire what appears to be mass. This is similar to the action of viscous forces felt by particles moving through any thick liquid. the larger the interaction of the particles with the field, the more mass they appear to have. Thus the existence of this field is essential in Higg’s hypothesis for the production of the mass of particles.

We know from quantum theory that fields have particles associated with them, the particle for the electromagnetic field being the photon. So there must be a particle associated with the Higg’s field, and this is the Higgs boson. Finding the Higgs boson is thus the key to discovering whether the Higgs field does exist and whether our best hypothesis for the origin of mass is indeed correct.


Μοιραστείτε το Άρθρο

Facebook
Twitter
LinkedIn
Email
Print

Απάντηση

ΚΑΤΗΓΟΡΙΕΣ ΑΡΘΡΩΝ
ΧΡΟΝΟΛΟΓΙΟ ΑΡΘΡΩΝ
ΧΡΟΝΟΛΟΓΙΟ ΑΡΘΡΩΝ
ΚΑΤΗΓΟΡΙΕΣ ΑΡΘΡΩΝ
ΗΜΕΡΟΛΟΓΙΟ ΑΡΘΡΩΝ
Οκτώβριος 2024
Δ Τ Τ Π Π Σ Κ
 123456
78910111213
14151617181920
21222324252627
28293031  
ΗΜΕΡΟΛΟΓΙΟ ΑΡΘΡΩΝ
Οκτώβριος 2024
Δ Τ Τ Π Π Σ Κ
 123456
78910111213
14151617181920
21222324252627
28293031  
Εγγραφή στο Ιστολόγιο μέσω Email

Εισάγετε το email σας για εγγραφή στην υπηρεσία αποστολής ειδοποιήσεων μέσω email για νέες δημοσιεύσεις.